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Deterministic and stochastic cellular automata models available to study two-dimensional traffic flow are
compared in this paper. It is shown that a connection between them can be made only when the infinite time
and infinite system limits are taken in the appropriate order. We also stress the crucial importance of the choice
of boundary conditions in the deterministic model to obtain bulk properties.
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In the last few years there has been a growing interest in
the study of cellular automata (CA) models which try to
mimic, with simple rules, the features of traffic in highways
[1]. Recently some work has also been focused on the be-
havior of traffic in cities. Along this line two CA models
have been proposed [2,3]. Both describe two equal popula-
tions of cars moving in perpendicular directions from node to
node of a square-lattice-like city with streets pointing only
up and right and periodic boundary conditions (BC’s). Move-
ment occurs in discrete time steps and traffic lights rule it so
that they allow horizontal and vertical movements alter-
nately. The interaction between cars forbids a car to jump to
a node if it is occupied by another car at the same time step.
The model of Ref. [3] includes the ability of cars to turn with
probability v e [0,1/2]. When y=0 this model reduces to
that of Ref. [2]. In both models a phase transition from a
freely moving phase to a jammed one occurs above a certain
density of cars. Whereas the jammed phase is characterized
in both models by a low value of the average velocity v
(which approaches 0 as vy goes to 0), there is a drastically
different behavior of the average velocity as a function of the
density of cars n in the freely moving phase. The determin-
istic model [2] shows that v remains constant and equal to its
maximum value up to the transition density, while the sto-
chastic model [3] exhibits an almost linear decrease with
slope —1/2 which appears not to depend on 7y. A recent
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mean-field-like study of the latter model [4] confirms this
fact. It is the purpose of this paper to make clear the connec-
tion between these two models and the origin of this discon-
tinuity of the behavior of v(n) in the parameter 7.

In Ref. [4] a microscopic description of these models was
achieved by introducing a set of Boolean variables, namely
(i) occupation numbers of site r and time step ¢ for vertical
and horizontal cars, u%. and v%., respectively, (ii) turning vari-
ables for the u cars, & (=1 with probability y and =0 with
probability 1— ), and for the v cars, 7. (the other way
around), and (iii) a traffic-light variable, ‘=t mod 2. With
these variables and the constraint u.v.=0 Vr,¢, the equation
of motion for x."! turns out to be
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! is obtained from the

and the corresponding one for ».* )

above by exchanging 4 and v, and & and 7; b denotes
1—>b and subscripts x and y denote unit-vector displace-
ments in either direction. The mean velocity at time ¢ is
defined as the number of movements per car that occurred at
that time step:
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where N is the total number of cars and [A']=L S AL
stands for the average over the lattice (L is the linear size of
the city). Using Eq. (1) and assuming L — (so that we can
take the random variables out of the brackets replaced by
their averages):

t+1
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(and the counterpart for v) and then v(#) can be written in
terms of space correlations rather than time correlations.
By breaking up correlations in the steady state
([ ]~ ni]=n?/4) it was shown in [4] that, for
large cities (L —), Eq. (2) yields

v(t)~(1—n)/2 (4)

in the low-density limit (n—0), in good agreement with the
simulations in the freely moving phase. The decorrelation
assumption relies on the fact that the randomness favors the
loss of memory of the system between successive car en-
counters (at least for dilute enough systems).

We face a paradox here when we try to compare this
result with the simulations for y=0 [2]. On the one hand, the
above argument does not hold for this case since it makes
explicit use of the randomness to justify the decorrelation; on
the other hand, we see that the prediction obtained for the
average velocity does not depend on 7, so in principle the
argument should also apply to the deterministic case as a
limit of vanishing randomness. Anyhow, the simulations of
Ref. [2] are in strong disagreement with this result as they
unquestionably show that v =1/2 (v =1 according to the nor-
malization used in Ref. [2]) in the whole freely moving
phase. To sort out this question we have to gain a deeper
insight into the procedure we are actually following to per-
form the calculations, and revise the validity of the decorre-
lation assumption.

In the deterministic model cars can move either vertically
or horizontally but they cannot change direction under any
circumstance. Randomness is then excluded, so a given ini-
tial condition evolves always in the same way. Therefore, for
a finite L, any initial configuration must end up in one of two
different asymptotic regimes: a jammed state in which all
cars are stopped, or a periodic state. This is a simple conse-
quence of the following: as the system has a finite number of
different states and it evolves in a deterministic way, if the
system does not jam, sooner or later it must reach a state in
which it was before, and from then on the evolution is nec-
essarily periodic. Clearly, the larger the system, the larger the
average period (as illustrated in Fig. 4 of Ref. [2]). Notice
that this does not hold for ¥ # 0 (no matter how small vy is),
because a given initial condition may evolve in many differ-
ent ways, depending on the random variables. Asymptoti-
cally periodic states are then ruled out of this case. In the
computer simulations reported in Refs. [2, 3] the relevant
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quantities are computed once the asymptotic regime has been
reached, and this makes a big difference between both cases:
for y=0 this means waiting until the time gets larger than
the period of the system, which grows with the system size
L; for v # 0 the time to reach the steady state is indepen-
dent of L because in this case the system is explicitly
diffusive—by virtue of the randomness, which means that
there will be a finite relaxation time when L —oo.

In deriving Eq. (4) we have performed two operations:
first, we have taken the limit L-—oo (“thermodynamic
limit”) and second we have waited until the steady state is
formed (we will henceforth call this procedure the LT limit).
Instead, the simulations results have been obtained first wait-
ing up to the steady state is formed and second extrapolating
to the infinite system (we will henceforth call this procedure
the TL limit). According to the above discussion, taking the
LT or the TL limits makes no difference if y # 0, but if
y=0, which limit is being taken may yield different results.
It is easy to understand why this is so: in the LT limit, the
system will hardly reach a periodic regime (because the av-
erage period goes to infinity), whereas in the TL limit we are
averaging precisely in the periodic regime (with maximum
velocity according to Ref. [2]). With this in mind it is now
clear that a connection between the y—0 limit of Eq. (4) and
the y=0 model is to be expected only in the LT limit but
never in the TL limit; therefore there is no contradiction
between Eq. (4) and the results of Ref. [2].

In order to check whether Eq. (4) makes a correct predic-
tion in the LT limit when y=0 we have performed simula-
tions on the deterministic system at very low density (freely
moving phase), where the decorrelation approximation is
supposed to hold. In each run we compute v(¢) averaged
over a large set of randomly chosen initial conditions (each
initial condition having the same probability). In Fig. 1 we
have plotted, for L =64, 128, and 256 and very small 7, the
function s(#)={(v(¢))—1/2}/n, which in the limit n—0
gives the slope of v(t), as a function of n, for n=0 [notice
that if Eq. (4) applies to y=0, s(¢) should be —1/2, while if
v(t)=1/2, s(t)=0]. This plot exhibits three striking fea-
tures: two separated regimes, a discontinuity separating them
at t=2L, and a jump separating the first two time steps from
the rest of the figure. All three deserve some comments.

First of all, we can see that for 2<<t<<2L s(¢) is time
independent and very accurately equals —1/4. As it is dif-
ferent from O, this result supports what we have been com-
menting on above, namely, that for y=0, the TL and the LT
limits lead to different results. In spite of that, the result is
also in disagreement with the — 1/2 prediction of (4). We will
comment on this point later. Secondly, there is a big jump at
t=2L, changing the slope from the value —1/4 to almost 0.
This feature reveals the strong influence of the periodic BC’s
in the synchronization of the system for y=0 (notice that,
due to the traffic lights, a single car will take 2L time steps to
arrive at the site it started from). This figure is to be com-
pared with Fig. 2, where we have plotted s(¢) for L =64 and
small » also, but for y=0.05. Even for such a small value of
7 no jump can be appreciated, thus supporting our argument
on the existence of a bulk relaxation time when y # O.
Randomness then largely weakens the influence that the
BC’s may have on the system. On the other hand, in spite of
the fact that the plot is rather noisy, it can be appreciated that
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FIG. 1. Plot of s(¢)=[v(t)—1/2]/n as a function of ¢ for three
system sizes, L, averaged over initial configurations randomly cho-
sen with equal probability (10° for L =64, 10° for L =128, and
2.5X10* for L =256), for the deterministic system (y=0) at den-
sity n=1073. The inset shows the same plot at very short times.

the slope has an average value clearly lower than —1/4
(around —0.32), but still higher than —1/2. As we have
said, we will come back to this point later on.

We have performed the same analysis for slightly larger
densities. The results appear in Fig. 3, where we have plotted
s(t) for y=0, a couple of values of n, and three system
sizes. We again observe the same three features as in Fig. 1,
but this time there is a size-independent transient for 2<\t¢
< 2L rather than a steady state [for t>2L the behavior is
different for each size and s(¢) eventually reaches the limit
s(t)=0]. The coincidence of this transient regime for all
sizes makes it clear that it can only depend on bulk proper-
ties of the system, and accordingly disappears once the BC’s
come into play. Unfortunately, the slow decay of this tran-
sient makes the LT limit numerically accessible only at ex-
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FIG. 2. Plot of s(¢) for L=64, n=3%10"3, and y=0.05. No-
tice the absence of any jump at t=2L. The inset shows s(¢) for
¥=0,n=15X 1073 and L =64, for a run performed with the “en-
tangled” boundary conditions. Averages are performed over 10°
initial configurations.

t

FIG. 3. Same as Fig. 1 for two larger densities: n=10"2 (dashed
lines) and n=5X 1072 (solid lines). The latter are shifted 0.1 units
up. The dotted line (the lowest curve in the figure) shows the same
as Fig. 2 for n=10"2.

tremely low densities. At higher densities we cannot deter-
mine from these data what the limit of s(#) is or whether it
coincides with the TL limit [s(#) =0]. In contrast, the results
for y=0.05 (also shown in Fig. 3) exhibit no difference with
respect to Fig. 2 at all.

Let us return now to the discrepancies between the slopes
measured from Figs. 1 and 2 and the value s(¢t) = —1/2 given
by (4). To clarify what is going on we need to be more
careful in the analysis. For y=0, we can trace back the ar-
gument that led to Eq. (4) in order to see what is wrong in
the decorrelation assumption: remember that the evolution is
such that a car does not move if the site it wants to move to
is occupied by another car at the same time step. This means
that if, at time ¢, we have u-type cars (which move only
vertically) at sites r and r+y, at the next time step at which
traffic lights allow vertical movement, the car at r+y will
move to r+2y, while the car at r will remain there. In suc-
cessive time steps both cars will move, maintaining that
separation between them. This situation will last until a third
car comes into play. It is clear that the lower the density, the
less probable are these three-car encounters, so in the n—0
limit, [p'uy]~0, and similarly [»'»,]~0. For y=0 (and
L —x) Eq. (3) and its counterpart become

n -

[T =o' 5+ o {lu' md+Iu'nl}
n
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with the result we have just obtained and maintaining the
decorrelation assumption for the other two correlations, this
couple of equations together with Eq. (2) lead to the expres-
sion (in the limit n—0) v~(2—n)/4, now in perfect agree-
ment with Fig. 1. By the way, the above argument does not
hold for the first two time steps (while the above synchroni-
zation mechanism is taking over) because the initial configu-
rations are chosen at random with equal probability and this
gives as a result that all correlations have the same value,
n%/4. As we have seen in the beginning, this unavoidably
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FIG. 4. Plot of the steady value of s(¢) as a function of y for
different values of n and L =128. To reduce noise, the values for
v # 0 have been obtained averaging along 10° time steps once the
steady state has been reached. The only point for y=0 has been
obtained averaging over time for +<<2L.

leads to Eq. (4) for v [5]. This is the origin of the jump in
Fig. 1 at t=2 (the last of the features of this figure that still
remained to be explained).

For y # 0 the above argument is not valid, but neither
does Eq. (4) seem to describe the behavior appropriately
when v is close to 0. For this reason we have computed the
(in the LT limit) steady value of s(¢) for different y’s and
several densities. The results appear in Fig. 4. Surprisingly,
this figure clearly shows that the value s= —1/2 is nothing
but a rough estimate of the actual slope—and only for y’s
not too close to 0. The estimate improves as n increases but
it can never be considered an accurate prediction for the
slope [6]. The value for y=0 could only be computed for the
smallest density because larger densities do not reach the
steady state before £=2L. Anyhow, it can be guessed from
the figure that the limit y—0 seems to exist and to have a
nonzero value, although this value approaches 0 as n in-
creases. Densities above ~(.2 cannot be reached because the
system for y=0.01 already undergoes the jamming transi-
tion. It is worthwile to remark that the results of Fig. 4 de-
pend only very slightly on the system size (up to the largest
size we have studied, L =256).
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To summarize, the main conclusion that can be drawn
from this work is that, in spite of the apparent difference
between the deterministic and the stochastic models, there is
a regime in which both can be connected, before the BC’s
have any influence. After that point both systems separate
because the BC’s strongly favor the synchronization in the
deterministic model, while their influence is discarded in the
stochastic model due to the random dynamics. Then the
choice of BC’s turns out to be crucial in the deterministic
model when one is interested in the bulk properties of the
system. We can illustrate this point further with a preliminary
simulation we have performed in the deterministic model
with a different choice of BC’s. In the periodic BC’s all the
streets getting out of the system through an edge are con-
nected with themselves at the other edge. In the new BC’s
the streets are randomly entangled before the connection is
made. This is done once at the beginning and the entangle-
ment is kept for all the simulations, so that the system is still
deterministic. With these new BC’s we expect that the syn-
chronization of the system is made more difficult. We have
plotted s(¢) for one of these runs in the inset of Fig. 2. The
jump at r=2L has disappeared and, in spite of the length of
the run, no influence of the system size can be appreciated. It
is very interesting that, after a transient of about 3000 time
steps, s(t) reaches a value very close to —1/4, the limit
y—0 of the stochastic model, and not to 0, the value ob-
tained with the periodic BC’s. It seems clear that this result
opens many questions. Given the strong influence of the
BC’s in the freely moving phase of the deterministic model,
one may wonder how they will influence the transition to the
jammed phase (both its location in the phase diagram and the
structure of the jam). On the other hand, the results obtained
with the “entangled” BC’s as well as those pointed out by
the short-time regime with the periodic BC’s are compatible
with the results obtained with the stochastic model in the
limit y—0, so this might be an alternative way to reach the
bulk properties of the deterministic model.
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